Single-Nanoparticle Tracking with Angstrom Localization Precision and Microsecond Time Resolution
نویسندگان
چکیده
منابع مشابه
Organelle tracking in a living cell with microsecond time resolution and nanometer spatial precision.
The study of cellular processes such as organelle transport often demands particle tracking with microsecond time-resolution and nanometer spatial precision, posing significant challenges to existing tracking methods. Here, we have developed a novel strategy for two-dimensional tracking of gold nanoparticles (GNPs) with 25 mus time resolution and approximately 1.5 nm spatial precision, by using...
متن کاملNanoparticle printing with single-particle resolution.
Bulk syntheses of colloids efficiently produce nanoparticles with unique and useful properties. Their integration onto surfaces is a prerequisite for exploiting these properties in practice. Ideally, the integration would be compatible with a variety of surfaces and particles, while also enabling the fabrication of large areas and arbitrarily high-accuracy patterns. Whereas printing routinely m...
متن کاملSingle-molecule gold-nanoparticle tracking.
Gold nanoparticles, like single fluorophores, can be used to locate single molecules with nanometer accuracy. Unlike an optical trap, the gold particle label does not exert an external load, which is important for studying diffusive processes. Thus, a gold particle can be used analogously to a single fluorophore, providing similar information but with submillisecond time resolution. The feature...
متن کاملSimple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution.
Molecular motors such as kinesin, myosin, and F(1)-ATPase are responsible for many important cellular processes. These motor proteins exhibit nanometer-scale, stepwise movements on micro- to millisecond timescales. So far, methods developed to measure these small and fast movements with high spatial and temporal resolution require relatively complicated experimental systems. Here, we describe a...
متن کاملTracking single particles and elongated filaments with nanometer precision.
Recent developments in image processing have greatly advanced our understanding of biomolecular processes in vitro and in vivo. In particular, using Gaussian models to fit the intensity profiles of nanometer-sized objects have enabled their two-dimensional localization with a precision in the one-nanometer range. Here, we present an algorithm to precisely localize curved filaments whose structu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2018
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2018.11.016